

Linear A lgebra

School of ECE, University of Tehran acsl.ut.ac.ir/linearalgebra

Course Outline

Session #	Section	Detailed Topics	General Topics	Sources
1	1.1	Equilibrium Points & Energy of Dynamical Systems Derivative of State Variables Stable /Unstable Systems Analog Computation Complex vs. Real Matrices Complex Numbers by Matrices State Dependent Dynamical Systems	Linear Algebra: A Big Picture	Miscellaneous
2	2.1	Set and (Proper) Subsets Intersection / Union of Sets Disjoint Sets Difference of Sets Index Sets Equivalence Relations Reflexivity, Symmetry and Transitivity of Relations Domain and Codomain Pre-Image and Image	Set/Subset/Relation/Function	
	2.2	Range Equality of Functions (Transformation)	– Domain/Codomain/Range	
3	3.1	Injection and Surjection Surjection and its Relation to Range and Codomain Bijection Bijection and its Relation to Injection and Surjection Restriction of a Function with Respect to a Set Composition of Functions	Injection/Surjection/Bijection	[5,7]
	3.2	Invertibility of a Function Invertibility vs. Bijection Duality	Function Inversion	
4	4.1	Algebraic Structures Group Ring and Field Binary Operation Fundamental Theorem of Algebra Algebraic Closeness	Abstract Algebra	
	4.2	Sum of Vectors Multiplication by Scalars	– Vectors	

		Commutativity /Associativity of Addition in Vector Spaces		
		Zero, Symmetric, Identical and Inverse Elements	Vector Spaces	
5	5.1	Field and Vector Elements		[1,3]
	-	(Skew) Symmetric / (Skew) Hermitian Matrices		
	5.2	Subspace		
	6.1	Linear Dependence / Independence	Verter Succes (Contd.)	
	0.1	Replacement Theorem	Vector Spaces (Contd.)	
		Lagrange Interpolation	Bases and Dimension	
6	6.2	Finite Vector Spaces		
6		Flexible Structures (ODE \rightarrow PDE)		
		Complex Vector Spaces		
		Generator Set		
		Venn Diagram		
		Linear Transformation	Lines Tree Courting (
	7.1	Reflection, Rotation, Projection, Identity, Derivative and	Linear Transformations / Matrices	
7		Zero Transformations	Wattices	
7 -		Null Space, Kernel and Range		
	7.2	Rank and Nullity	Null Space / Image	
		Dimension Theorem		
		Ordered Basis		
		Coordinate Vector		
8	8.1	Vector Space of All Linear Transformations	Matrix Representation	[1,3]
0	0.1	Matrix Multiplication	Maura Representation	
		Left Multiplication Transform		
	9.1	Inverse of a Matrix	Invertibility / Isomorphism Coordinate Change	
		Isomorphic Functions and Vector Spaces		
9	0.0	Linear Operators		
	9.2	Change of Coordinates		
		Elementary Matrix Operations		
	10.1	Gaussian Elimination		
10		Triangular Factorization	Solving Linear Equations	
		LDU Decomposition		
		Pivoting		
	11.1	Partial Pivoting		
11		Round-off Error		
	11.2	Fundamental Theorem of Linear Algebra	Orthogonal Complement	
		Dual basis		
	12.1	Vector Mapping Using Dual Basis	Dual Spaces Linear Functional	[1,4]
12		Linear Functional		
		A Vector Space and its Double Dual		
		Annihilator of Subset / Subspace		
	13.1	Solution Set	Homogeneous / General Solutions	
		Consistent / Inconsistent System of Equations		
		Homogeneous / Nonhomogeneous Systems System of		
13		Equations		[1]
-	13.1	-1	Nollitione	
	13.1	Echelon Form of a Matrix	Solutions	

	14.1	Natural, Odd and Even Permutations	Permutation Group	
		Basic Properties of Determinant	1	
14		Determinant Using Cofactors		
		Matrix Inverse Using Adjugate		[2]
	14.2	Principle and Non-vanishing Minors	Determinant	L~J
		Determinant vs. Matrix Rank		
	-	Determinant vs. Volume		
		Characteristic Polynomial		
	-	Eigenvalues and Eigenvectors	– Diagonalizability	
15	15.1	Eigenspace		
	-	Test for Diagonalization		
		Sum and Direct Sum of Subspaces		
	16.1	Diagonalization in Terms of Direct Sum	Direct Sum, Revisited	
		Column Sum		[1,2,3]
	16.2	Eigenvalue Bound and Gerschgorin Disks	- Disk Theorem	
16		Convergence in Matrix Spaces		
	16.3	Stochastic Matrices	Matrix Limits / Markov Chains	
		Markov Chains and Process		
	16.4	Regular Transition Matrix		
	16.4	Power of Regular Transition Matrix	- Regular Transition Matrices	
	17.1	T-Invariant Subspaces		
17			Invariant Subspaces	[1,3]
	17.2	Cayley-Hamilton Theorem	1	
		Cayley-Hammon Theorem		
		Inner Product Spaces	Euclidean & Unitary Spaces	
	19.1	Standard Inner Product		
		Frobenius Inner Product		
		Cauchy-Schwartz / Triangle Inequality		
19		Orthogonal / Orthonormal Vectors		
17		Norm and Distance		
		Orthonormal Basis		
		Gram-Schmidt Orthogonalization		
		Vector Projection		
	19.2	QR Decomposition Using Gram-Schmidt Procedure	QR Decomposition	[1,3]
	20.1	Data Fitting	- Least Squares Approximation	[-,~]
20		Dimension Theorem		
		Minimal Solution		
		Properties		
	21.1	Spectral Theorem	Symmetric Matrices	
		Pivots vs. Eigenvalues		
21		Quadratic Functions	Definite Matrices	
	21.2	Definite / Indefinite Matrices		
		Positive / Negative (Semi) Definite Matrix		
	22.1	Schur Theorem	Normal / Self-Adjoint Operators Spectral Theorem	[1]
		Self-Adjoint vs. Hermitian Operators		
22		Positive (Semi) Definite Operators		
		Unitary / Orthogonal Operators		
		Orthogonal Projection		
1		Orthogonal Trojecholi	Specual medicini	

23	23.1	Spectral Decomposition	Spectral Theorem (Contd.)	[1,6]
	23.2	Euclidean Space	Euclidean / Hermitian Spaces	
		Hermitian Space		
24	24.1	First / Second Order Approximation	Approximation and Extremal Points	[6,7]
		Stationary Points		
		Hessian Matrix		
		Algebraic / Geometric Multiplicity		
	25.1	Singular Values / Vectors	Singular Value Decomposition	[3,7,8]
25		Pseudo-Inverse		
		Image Compression via SVD		
	26.1	Cholesky Factorization	Square Root of Positive Definite	
	26.1	Diagonal Form of a Quadratic Function	Matrices	
26	26.2	Signature of a Symmetric Real Matrix	Congruent Transformation	[2,3]
	20.2	Congruence Matrices	_	
	26.3	Generalized Eigenvalue Problem	Generalized Eigenvalue Problem	
	27.1	Well-conditioned / Ill-conditioned Systems	Conditioning and Rayleigh Quotient	[1,3,7]
		Rayleigh Quotient and Condition Number		
		Euclidean Norms		
27		Sensitivity Analysis for $Ax = b$		
21	27.2	p-Norm	Vector Norm	[1,3,7]
	27.3	Frobenius Norm		
		General Matrix Norm	Matrix Norm	
		Spectral Norm		
	28.1	Nilpotent Matrix	Jordan Canonical Form	[1,3,5]
		Shift Matrix		
		Monic Polynomial		
		Minimal Polynomial		
28		Defective Matrix		
20		Generalized Eigenvector		
		Jordan Chains		
		Computation of Generalized Eigenvectors		
		Jordan Canonical Form and Differential Equations		
		Matrix Functions		

References

- [1] Friedberg, S. H., Insel, A. J. and Spence, L. E., Linear algebra, 4th Edition, Prentice Hall, 2002.
- [2] Banerjee, S., and Anindya, R., Linear algebra and matrix analysis for statistics. CRC Press, 2014.
- [3] Strang, G., Introduction to Linear Algebra, 5th Edition, Wellesley Cambridge Press, 2016.
- [4] Lipschutz, S., and Lipson, M. L., Linear Algebra: Schaum's Outlines. McGraw-Hill, 2009.
- [5] Bernstein, D. S., Matrix mathematics: theory, facts, and formulas. Princeton university press, 2009.
- [6] Gallier, J., Fundamentals of linear algebra and optimization. University of Pennsylvania 2014.
- [7] Chen, C. P., *Linear Algebra*. Lecture Notes.
- [8] Burl, J. B., *Linear Optimal Control: H₂ and H_∞ Methods*, Addison-Wesley Longman Publishing Co. Inc., 1998.